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Abstract − Sparse representation-based methods have very lately shown promise for speaker recognition 

systems. This paper investigates and develops an i-vectorbased sparse representation classification (SRC) 

as an alternative classifier to Support Vector Machine (SVM) and Cosine Distance Scoring (CDS) 

classifier, producing an approach we term i-vectorSparse Representation Classification (i-SRC). Unlike 

SVM which fixes the support vector for each target example, SRC allows the supports, which we term 

sparse coefficient vectors, to be adapted to the test signal being characterized. Furthermore, similar to 

CDS, SRC does not require a training phase. We also analyze different types of sparseness methods and 

dictionary composition to determine the best configuration for speaker recognition. We observe that 

including an identity matrix in the dictionary helps to remove sensitivity to outliers and that sparseness 

methods based on ℓ1 and ℓ2 norm, offer the best performance. A combination of both techniques achieves 

a 18% relative reduction in EER over a SRC system based on ℓ1 norm and without identity matrix. 

Experimental results on NIST 2010 SRE show that the i-SRC consistently outperform i-SVM and i-CDS 

in EER in the range of 0.14–0.81% and the fusion of i-CDS and i-SRC achieves a relative EER reduction 

of 8–19% over i-SRC alone.  

 

Index Terms  Speaker recognition, sparse representation classification, ℓ1-minimization, i-vectors, 

support vector machine, cosine distance scoring 
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1. Introduction 

Automatic speaker verification is the task of authenticating a speaker’s claimed identity. There are two 

fundamental research issues in automatic speaker verification, which are the exploration of discriminative 

information in speech in the form of features (e.g. spectral, prosodic, phonetic and dialogic) and how to 

effectively organize and exploit the speaker cues in the classifier design for the best performance.  

Addressing the latter issue, some of the conventional methods include support vector machines 

(SVM) [1, 2] and Gaussian mixture model  universal background models (GMM-UBM) [3, 4]. When 

using GMM-UBM, each speaker is modelled as a probabilistic source. Each speaker is represented by the 

means (  , covariance (typically diagonal) (   and weights (ω) of a mixture of n multivariate Gaussian 

densities defined in some continuous feature space of dimension f. These Gaussian mixture models are 

adapted from a suitable UBM using maximum a posterior (MAP) adaptation [4]. Matching is then 

performed by evaluating the likelihood of the test utterance with respect to the model. 

SVMs have proven their effectiveness for speaker recognition tasks, reliably classifying input speech 

that has been mapped into a high-dimensional space, using a hyperplane to separate two classes [1, 2]. A 

critical aspect of using SVMs successfully is the design of the kernel, which is an inner product in the 

SVM feature space that induces distance metrics. Generalised linear discriminant sequence (GLDS) 

kernels and GMM supervectors are two such kernels [1, 5, 6] and the latter is employed in this paper. 

GMM supervectors are formed by concatenating the MAP-adapted mean vector elements (     ) 

normalized using the weights (  ) and the diagonal covariance elements (    ) as shown in (1) where i is 

the index of the mixture, j is the index of the dimension of the feature vector, n is the total number of 

mixtures and f is the number of dimensions of the feature vector. Since SVMs are not invariant to linear 

transformations in feature space, variance normalization is performed so that some supervector 

dimensions do not dominate the inner product computations. 
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Although SVMs are capable of pattern classification in a high dimensional space using kernels, their 

performance is determined by three main factors: kernel selection, the SVM cost parameter and kernel 

parameters [7-9]. Many researchers have committed considerable time to finding the optimum kernel 

functions for speaker recognition [10-12] due to the diverse sets of kernel functions available. Once a 

suitable kernel function has been selected, attention turns to the cost parameter and kernel parameter 

settings [13]. Moreover, besides the factors as discussed above, the composition of speakers in the SVM 

background dataset has recently shown to have a significant impact on the speaker verification 

performance [14-17]. This is because the hyperplane that is trained using the target and background 

speakers’ data tends to be biased towards the background dataset in a speaker verification task since the 

number of utterance from the target speaker (normally only one utterance) is usually much less than the 

background speaker (thousands of utterances). Therefore effective selection of the background dataset is 

required to improve the performance of an SVM-based speaker verification system. In [15], the support 

vector frequency was used to rank and select negative examples by evaluating the examples using the 

target SVM model, and then selecting the closest negative examples to the enrolment speaker as the 

background dataset. Their proposed technique results in an improvement of 10% in EER on NIST 2006 

SRE over a heuristically chosen background speaker set.  

Currently, one of the main challenge in speaker modelling is channel variability between the testing 

and training data [18, 19]. In [20], Kenny et al. introduced Joint Factor Analysis (JFA) as a technique for 

modelling inter-speaker variability and to compensate for channel/session variability in the context of 

GMMs, and more recently the i-vectors [21, 22], which have collectively amounted to a new de facto 

standard in state-of-the-art speaker recognition systems. In the i-vector framework, the speaker and 

channel-dependent supervector M is represented as 

        (2) 

where T is the total variability matrix (containing the speaker and channel variability simultaneously) and 

q is the identity vector (i-vector) of dimension typically around 400. Channel compensation is then 

applied based on within-class covariance normalization (WCCN) [26] and/or linear discriminant analysis 
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(LDA) [21]. WCCN was introduced in [27] for minimizing the expected error rate of false acceptances 

and false rejections during the SVM training step. The WCC matrix is computed as 
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where   ̅̅ ̅  
 

  
∑   

   
     is the mean of the i-vectors of each speaker, C is the number of speakers and nc is 

the number of utterances for each speaker c. Then a feature-mapping function       is defined as 

     (        (4) 

where B is obtained through Cholesky decomposition of matrix       . In the case of LDA, 

similarly to WCCN, the speaker factors are then submitted to the projection matrix A obtained from 

LDA[21] as follows 

    (        (5) 

In the total variability space, Dehak et al. [21] introduce a new classification method based on cosine 

distance, termed the Cosine Distance Scoring (CDS) classifier as an alternative to SVM  as shown in 

equation (6) where       and         are the test and target speaker’s i-vectors respectively. The CDS 

classifier allows a much simplified speaker recognition system since the test and target i-vectors are 

scored directly, as opposed to SVM which requires the training of a target model before scoring. 

     (             )  
〈             〉 

‖     ‖‖       ‖
 (6) 

Widespread interest in sparse signal representations is a recent development in digital signal 

processing [28-31]. The sparse representation paradigm, when it was originally developed, was not 

intended for classification purposes but instead for an efficient representation and compression of signals 

at a greatly reduced rate than the standard Shannon-Nyquist rate with respect to an overcomplete 

dictionary of base elements [32, 33]. Nevertheless, the sparsest representation is naturally discriminative 

because among the set of base vectors, the subset which most compactly represent the input signal will be 

chosen [31]. In compressive sensing, the familiar least squares optimization is inadequate for signal 
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decomposition, and other types of convex optimization are used [28]. This is because the least square 

optimization usually results in solutions which are typically non-sparse (involving all the dictionary 

vectors) [34] and the largest coefficients are often not associated with the class of the test sample when 

used for classification as illustrated in [31].   

In recent years, sparse representation based classifiers have begun to emerge for various applications, 

and experimental results indicate that they can achieve comparable or better performance to that of other 

classifiers [31, 35-37]. In the case of face recognition, Wright et al. cast the problem in terms of finding a 

sparse representation of the test image features with respect to the training set, whereby the sparse 

representation are computed by ℓ1-minimization [31]. They exploit the following simple observation: if 

sufficient training data are available for each class, a test sample is represented only as a linear 

combination of the training sample from the same class, wherein the representation is sparse by excluding 

samples from other classes. They have shown an absolute accuracy gain of 0.4% and 7% over linear SVM 

and nearest neighbour methods respectively on the Extended Yale B database [38]. Further, in [35], 

Naseem et al. showed classification based on sparse representation to be a promising method for speaker 

identification. Although the initial investigations were encouraging, the relatively small TIMIT database 

characterizes an ideal speech acquisition environment and does not include e.g. reverberant noise and 

session variability. Recently we exploited the discriminative nature of sparse representation classification 

using supervectors and NAP [35] for speaker verification as an alternative and/or complementary 

classifier to SVM on the NIST 2006 SRE database [39].  

Recently, a discriminative SRC, which focuses on achieving high discrimination between classes as 

opposed to the standard sparse representation that focuses on achieving small reconstruction error, was 

proposed specifically for classification tasks [30]. The results in [30] demonstrated that discriminative 

SRC is more robust to noise and occlusion than the standard SRC for signal classification. The 

discriminative approach works by incorporating an additional Fisher’s discrimination power to the 

sparsity property in the standard sparse representation. Our initial investigation was unsuccessful since the 

discriminative SRC requires the computation of the Fisher F-ratio (ratio of between-class and within-class 
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variances) [40] with multiple samples per class. However for the task of speaker verification (which is a 

two class problem) with only one sample for the target class, the within-class scatter for the target class 

always goes to zero. 

This paper is motivated by our previous work on sparse representation using supervectors [39] and 

recent work by Li et al. [41] using i-vectors as features for SRC. Li et al [41] focus on enhancing the 

robustness and performance of speaker verification through the concatenation of a redundant identity 

matrix at the end of the original over-complete dictionary, new scoring measures termed as background 

normalised (Bnorm) ℓ2-residual and a simplified TNorm procedure for SRC system by replacing the 

dictionary with TNorm i-vectors. However, two factors that can have a significant impact on 

classification performance, the choice of sparsity regularization constraints and background set used in 

the SRC dictionary are not explored. As discussed earlier, ever since SVMs were introduced to the field 

of speaker recognition by Campbell et al. [1], various extensive investigations have been conducted in 

each individual component of SVM (e.g type of kernel, SVM cost parameter, kernel parameters and 

background dataset) with the hope of improving the system performance and/or increasing the 

computational efficiency of SVM training. Similarly in this work and building on the work of Li et al. 

[41], we extend our analysis to different types of sparseness constraints, dictionary composition and ways 

to improve the robustness of SRC against corruption as recommended in [31, 41] to determine the best 

configuration for speaker recognition using SRC. Furthermore, a comparison in terms of classification 

performance between CDS and SRC will be conducted since both classifiers have the common property 

of not requiring a training phase.  

2. Sparse Representation Classification 

2.1.  Sparse Representation 

The sparse representation of a signal with respect to an overcomplete dictionary is formulated as follows. 

Given a K  N matrix D, where each column represents an individual vector from the overcomplete 
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dictionary, with N > K and usually N >> K, then for the sparse representation of a signal      , the 

problem is to find an N  1 coefficient vector   , such that      and ‖ ‖  is minimized as follows 

        
  

‖  ‖                           (7) 

where ‖ ‖  denotes the ℓ0-norm, which counts the number of nonzero entries in a vector. However 

finding the solution to a underdetermined system of linear equations is NP-hard [42]. Recent 

developments in sparse representation and compressive sensing [43, 44] indicate that if the solution   

sought is sparse enough, the ℓ0-norm in (7) can be replaced with an ℓ1-norm as shown in (8), which can be 

efficiently solved by linear programming. 

        
  

‖  ‖                           (8) 

2.2.  Classification based on Sparse Representation 

In classification problems, the main objective is to determine correctly the class of a test sample (S) given 

a set of labelled training samples from L distinct classes. First, the li training samples from the ith class 

are arranged as the columns of a matrix    [                 ] . If S is from class i, then S will 

approximately lie in the linear span of the training samples in Di [31] 

                                  (9) 

for some scalars,                  . 

Since the correct class identity of the test sample is unknown during classification, a new matrix D is 

defined as the concatenation of all the training samples of all L classes: 

  [          ]  [                 ] (10) 

Then, S can be rewritten as a linear combination of all training samples as 

     (11) 

where the coefficient vector, termed the sparse coefficients [45],   [                            ]
 
 

has entries that are mostly zero except those associated with the ith class after solving the linear system of 
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equations      using (8). In this case, the indices of the sparse coefficients encode the identity of the 

test sample S, and these form the non-zero entries of what we term the ‘sparse coefficient vector’,  .  

In order to demonstrate sparse representation classification using ℓ1-norm minimization (equation 

(8)), an example matrix D was created using a small number of synthetic 3-dimensional data
1
 (K = 3), 

where the columns of D represent 6 different classes with 1 samples for each class in our previous work 

(L = 6 , N = 6) [39]. A test vector S was chosen near to class 4 (C4). Solving equation (8)
2
 produces the 

vector   ≈ [0, 0, -0.2499, 0.8408, 0, 0.2136]
T
, where the largest value (0.8408) corresponds to the correct 

class (C4), but   also has entries from training samples of classes 3 and 6. Ideally, the entries in   would 

only be associated with samples from a single class i where we can easily assign the test sample S to class 

i. However, noise may lead to small nonzero entries associated with other classes (as shown in the 

example discussed above) [31].  

For more realistic classification problems, or problems with more than one training samples per class, 

S can be classified based on how well the coefficients associated with all training samples of each class 

reproduce S, instead of simply assigning S to the object class with the single largest entry in   [31]. For 

each class i, let      
      be the characteristic function that selects the coefficients associated with 

the ith class as shown in (12).  

  (    

[
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(12) 

Hence for the above example, the characteristic function for class 4 would be 

  (   [                ] . Using only the coefficients associated with the ith class, the given test 

                                                 
1
 Please refer to [37] for details. 

2
 This example is solved using the MATLAB implementation of Gradient Projection for Sparse Reconstruction 

(GPSR) which is available online on http://www.lx.it.pt/~mtf/GPSR/. 



9 
 

sample S is approximated as  ̂     (  . S is then assigned to the object class,   , that gave the smallest 

residual between S and  ̂ : 

         
 

  (                   (   ‖   ̂ ‖ 
 (13) 

2.3.  Comparison of SVM and SRC classification 

A comparison of SVM and SRC in terms of recognition performance was conducted with the aim of 

understanding the similarities and differences between the classifiers. We considered simple 2-

dimensional data for easy visualization, as shown in Fig. 1. For sparse representation-based classification, 

all the samples are normalised to have unit ℓ2-norm, which matches the length normalization in the SVM 

kernel as shown in Fig. 1 (b).  This experiment is conducted on the Fisher iris data [46] using the sepal 

length and width for classifying data into two groups: Setosa and non-Setosa shown as “Class 1” and 

“Class 0” respectively on Fig. 1. The experiment was repeated 20 times, with the training and testing sets 

selected randomly.  

Notably, the performance of SRC matches that of the SVM in 19 out of the 20 trials. Similarly to 

SVM, the sparse representation approach also finds it difficult to classify the same test point indicated as 

“point 1” in Fig. 1 (a) for SVM and (b) for SRC, since it is in the subspace of class 0 for both classifiers. 

However “point 2” (shown in Fig. 1) is correctly classified as class 0 for SRC and misclassified as class 1 

by SVM. This could be because SVM does not adapt the number and type of supports to each test 

example. It selects a sparse subset of relevant training data, known as support vectors (shown as circles in 

Fig. 1 (a)) which correspond to the data points from the training set lying on the boundaries of the trained 

hyperplane, and uses these supports to characterize “all” data in the test set. Although visually “point 2” is 

closer to the training subset of class 0, it is misclassified since it is on the left hand side of the hyperplane, 

corresponding to class 1. SRC allows a more adaptive classification with respect to the test sample by 

changing the number and type of support training samples for each test sample [47] as shown in the 

sparse coefficients of four test samples (Fig. 1 (c) – (f)) chosen from Fig. 1 (b), indicated as “point 3” to 

“point 6” respectively, whereas the SVM classifies with the same support vector weights as shown in Fig. 
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1 (c) – (f) across all test data in the test set. In addition, Fig. 1 supports the concept that test samples can 

be represented as a linear combination of the training samples from the same class since it can be 

observed from Fig. 1 (c) – (d) that for test samples from Class 1 (indicated as Point 3 and 4 on Fig. 1(b)), 

the sparse coefficients have larger values for the dictionary indices belonging to class 1 and the same 

applies to Point 5 and 6 from Class 0 (shown in Fig. 1(e) – (f)). 
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Fig. 1 Comparison between (a) SVM and (b) SRC for a two-class problem (class 0 and class 1) where ‘+’ and 

‘*’ correspond to the training set instances for class 0 and class 1 respectively.  and  correspond to the test 

points for class 0 and class 1 respectively.  are the support vectors chosen from the training data sets of 

each class for SVM. (c) – (f) The values of the sparse coefficients and weights of the support vectors (shown in 

Fig. 1 (a)) for test points 3 – 6 respectively 

3. i-vector-based SRC 

In this work we explore the use of SRC for speaker verification since many experimental results reported 

in the literature indicate that SRC can achieve a generalization performance that is better than or equal to 

other classifiers [31, 35-37]. 
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In [35], Naseem et al proposed the use of the GMM mean supervector,  , to develop an over-

complete dictionary using all the training utterances of speakers in a database for speaker identification. 

Likewise, we employed a similar approach termed GMM-Sparse Representation Classification (GMM-

SRC) in the context of speaker verification in our previous work [39]. However the sparse representation 

of large dimension supervectors requires a large amount of memory due to the over-complete dictionary, 

which can limit the training sample numbers and could slow down the recognition process. Motivated by 

[41], where the authors proposed the use of i-vectors as features for the SRC, we adopt the same approach 

with the use of i-vectors as feature vectors for the SRC.  

The underlying structure and detailed architecture of the i-vector-based SRC, which we term i-

vector− Sparse Representation Classification (i-SRC) is shown in (14) and Fig. 2 respectively.  
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Fig. 2 Architecture of the i-SRC system. 

The over-complete dictionary (D) is composed of the normalized i-vectors (with unit ℓ2 norm) of 

training utterances from the target speaker (Dtar) and the background speakers (Dbg). The normalization 

process is analogous to the length normalization in the SVM kernel and in this paper the dictionary data 
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composition is the same as the kernel training data for SVM unless otherwise specified. In the context of 

speaker verification, usually          , with      equal to 1, where     and      represent the number of 

utterances from the background and target speakers respectively.  

Following this, the i-vector of a test utterance (S) from an unknown speaker are represented as a 

linear combination of this over-complete dictionary, a process referred to as sparse representation 

classification for speaker recognition, as follows 

     (15) 

Throughout the testing process, the background samples Dbg are fixed and only the target samples 

Dtar are replaced with respect to the claimed target identity in the test trial.  

In the context of speaker verification,   is sparse since the test utterance corresponds to only a very 

small fraction of the dictionary. As a result,   will have large   corresponding to the correct target 

speaker of the test utterance as shown in Fig. 3(a), where the dictionary index k=1 corresponds to the true 

target speaker. On the other hand, if the test utterance is from a false target speaker, the coefficients will 

be sparsely distributed across multiple speakers in the dictionary [36, 39], as shown in Fig. 3(b). As 

shown in Fig. 3, the membership of the sparse representation in the over-complete dictionary itself 

captures the discriminative information since it adaptively selects the relevant vectors from the dictionary 

with the fundamental assumption that test samples from a class lie in the linear span of the dictionary 

entries corresponding to the class of the test samples [31, 37]. Therefore, given sufficient training samples 

from each speaker, any new sample S from the same speaker can be expressed as a linear combination of 

the corresponding training samples. This assumption is valid in the context of speaker recognition since it 

has been shown by Ariki et al. that each individual speaker has their own subspace [48, 49]. In addition, 

even though the number of background examples significantly outweighs that of target speaker examples, 

the SRC framework is not affected by the unbalanced training set which is in contrast to an SVM system 

which requires tuning of the SVM cost values. This is because for SVM, a hyperplane trained by an 

unbalanced training set will be biased toward the class with more training samples [50, 51], but this is not 
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the case for SRC. On the other hand, SRC utilizes the highly unbalanced nature of the training example to 

form a sparse representation problem [41]. 
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Fig. 3 The sparse solution   of two example speaker verification trials (a) True target (k = 1) (b) False target 

Then the ℓ1-norm ratio,   shown in (16) is used as the decision criterion for verification, where the 

operator         selects only the coefficients associated with the target class [41]. The example shown in 

Fig. 3 has target ℓ1-norm of 0.1828 and 0.0537 for the true target (a) and false target (b) respectively. 

Although three different decision criteria are proposed in [41], our experiments showed that using the ℓ1-

norm ratio gave the best performance.  

   ‖       (  ‖ 
 ‖ ‖  (16) 

4. System Development Using SRC 

4.1.  Database 

All experiments reported in this section were carried out on the female subset of the core condition of the 

NIST 2006 speaker recognition evaluation (SRE) as development dataset for model parameter tuning 

which will be evaluated on NIST 2010 SRE in section 5. For each target speaker model, a five-minute 

telephone conversation recording is available containing roughly two minutes of speech for a given 
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speaker. In the NIST evaluation protocol, all previous NIST evaluation data and other corpora can be used 

in system training, and we also adopt this protocol.  

4.2. Experimental Setup 

The front-end of the recognition system includes an energy based speech detector [52] which was applied 

to discard silence and noise frames. A Hamming window of 20ms (overlap of 10ms) was used to extract 

19 mel frequency cepstral coefficients (MFCCs) together with log energy. This 20-dimensional feature 

vector was subjected to feature warping using a 3s sliding window, before computing delta coefficients 

that were appended to the static features. 

Three current state of the art systems, namely GMM-SVM [53], i-vector based SVM (i-SVM) [22] 

and i-vector based CDS (i-CDS) [22] were implemented as baseline systems. They are all based on the 

universal background model (UBM) paradigm [4], so we have used gender-dependent UBMs of 2048 

Gaussians trained using NIST 2004.  In our SVM system, we took 2843 female SVM background 

impostor models from NIST 2004 to train the SVM. In addition, for the GMM-SVM system, NAP (rank 

40) trained using NIST 2004 and 2005 SRE corpus was incorporated to remove unwanted channel or 

intersession variability [53].  On the other hand for i-SVM and i-CDS, LDA (trained using Switchboard II, 

NIST 2004 and 2005 SRE) with dimensionality reduction (dim = 200) followed by WCCN (trained using 

NIST 2004 and 2005 SRE) were used for session compensation
3
 [21]. For i-vector based systems, the 

total variability space matrix was trained using LDC releases of Switchboard II, Phases 2 and 3; 

switchboard Cellular, Parts 1 and 2 and NIST 2004-2005 SRE. The total variability matrix was composed 

of 400 total factors. Finally, the decision scores were normalized using zt-norm (z-norm followed by t-

norm) using 367 female t-norm models and 274 female z-norm utterances from NIST 2004 and 2005 SRE 

respectively. Note that any utterances from speakers in NIST 2005 that appear in NIST 2006 have been 

                                                 
3
 The combination/configuration of LDA and WCCN was determined experimentally through development on NIST 

2006 SRE and the best results were reported.  
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excluded from the training set. The speaker verification results for all the baseline systems are shown in 

Table 1.  

 In the following subsections, results for various SRC systems will be presented, unless specified 

all optimization was performed by the Gradient Projection for Sparse Reconstruction (GPSR) [54] 

MATLAB toolbox
4
 and no score normalisation are performed. Alternatively, other freely available 

MATLAB toolbox including ℓ1-magic [55], SparseLab [56] and l1_ls [57] can be used. During initial 

investigations, all toolboxes gave similar performance so GPRS was chosen as it is significantly faster, 

especially in large-scale settings [54]. Score normalisation (i.e TNorm) has been excluded from the SRC 

system because the conventional way of score normalisation (individual scoring against each TNorm 

model) slows down the verification process significantly (by a factor of three to six depending on the 

number of TNorm model and dictionary size) as compared with other systems (i.e SVM, CDS). Although 

a  novel SRC-based TNorm has been proposed in [41] through the replacement of the Tnorm data as the 

background samples in the over-complete dictionary, no performance improvement were observed in the -

proposed method over the conventional Tnorm as reported in [41]. In addition, the direct replacement of 

the background samples in the over-complete dictionary using TNorm data seems somewhat heuristic. 

 

Table 1: Baseline speaker verification results on the NIST 2006 Female Subset database 

Systems EER (%) minDCF 

GMM-SVM 14.79 0.0760 

GMM-SVM + NAP  5.78 0.0285 

i-SVM + LDA + WCCN  4.40 0.0230 

i-CDS + LDA + WCCN  4.31 0.0222 

                                                 
4
 Gradient Projection for Sparse  Reconstruction (GPSR) MATLAB toolbox is available online on 

http://www.lx.it.pt/~mtf/GPSR/ 
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4.3.  i-vector-based SRC 

In this section, we evaluate the i-SRC system in comparison with i-SVM and i-CDS. The dictionary Dbg 

matrix of SRC was composed of 2843 utterances from NIST 2004 SRE database, which was the same as 

the background training speaker database for SVM. Furthermore, we tried various channel compensation 

steps in the total variability space that are reported in [21] and the best performance for i-SRC was found 

to be based on LDA (i-SRC-LDA) with an EER of 5.03%. This result shows that the initial performance 

of the i-SRC is slightly worse than that of i-SVM and i-CDS. In the following sub-sections, we 

investigate some techniques presented in [21, 36, 41, 58] with a view to improving the system 

performance. 

4.4.  Robustness to corruption 

In many practical recognition scenarios, the test sample S can be partially corrupted due to large session 

variability. Thus it has been suggested in [31, 36, 41] to introduce an error vector e into the linear model 

in (17) as follows  

       [   ] [
 
 
]  ̇     (17) 

Here,    [   ]    (     so the system is always underdetermined. As before, the sparsest solution w 

is recovered by solving the following extended ℓ1-minimization problem 

 ̂     ‖ ‖                  

 ̂  [ ̂   ̂]       

(18) 

If the error vector e is sparse and has no more than 
      

 
 nonzero entries, the new sparse solution  ̂ is 

the true generator [31]. Finally, the same decision criterion in (1) is used for verification. 

Here we briefly illustrate the effect of including the identity matrix in the overcomplete dictionary 

and show the incremental improvement in accuracy for purposes of completeness. An example speaker 

from NIST 2006 database was chosen, such that the test speaker’s i-vector had a large outlier in the third 

dimension relative to its trainingi-vector, as shown in Fig. 4(a) and (b) respectively. It has been reported 
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in [31, 59] that the identity matrix will capture any redundancy between the test sample and dictionary, 

hence the outlier is captured by the identity matrix at the location corresponding to the third dimension in 

this example, for an original dictionary size of k = 2844 as shown in Fig. 4(c). The inclusion of the 

identity matrix in the dictionary improves the recognition performance from 5.03% to 4.73% EER. The 

improvement supports the claim in [31, 36, 41] that by adding a redundant identity matrix at the end of 

the original over-complete dictionary, the sparse representation is more robust to variability. 
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Fig. 4 Illustration of inclusion of identity matrix (a) Test speaker’s i-vector (b) Target speaker’s i-vector (for 

dictionary index = 1) (c) Sparse solution   without identity matrix (d) Sparse solution  ̂ with identity matrix 

included 
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4.5.  Sparseness constraint 

The use of exemplar-based techniques for both speech classification and recognition tasks has become 

increasingly popular in recent years. In [58], the appropriateness of different types of sparsity 

regularization constraints on   in speech processing applications was analysed. Sparseness methods such 

as LASSO [60] and Bayesian Compressive Sensing (BCS) [61], using an ℓ1 sparseness constraint, Elastic 

Net [62], which uses a combination of an ℓ1 and ℓ2 constraint and Approximate Bayesian Compressive 

Sensing (ABCS) [37], which uses an   
  constraint, were compared. Since the results reported in [58] for 

the various techniques for sparsity constraint coupled with an ℓ2 norm show almost similar results among 

the above techniques, Elastic Net (which gave the best performance reported in [58]) was selected for 

comparison in this section. It can be formulated as follows: 

   
 

‖    ‖   ‖ ‖  (    ‖ ‖ 
              [     (19) 

where  ‖ ‖  (    ‖ ‖ 
  is termed the elastic net penalty, which is a convex combination of the 

LASSO and ridge regression [63]. Ridge regression is an exemplar-based technique that uses information 

about all training examples in the dictionary to make a classification decision about the test example, in 

contrast to sparse representation techniques that constrain   to be sparse. When    , the naïve elastic 

net penalty becomes simple ridge regression and when    , it becomes LASSO. In this section, Elastic 

Net is implemented using the Glmnet MATLAB package
5
 [64] with       since it gave the best EER as 

shown in Fig. 5. 

 

                                                 
5
 MATLAB implementation of Glmnet is available online on http://www-stat.stanford.edu/~tibs/glmnet-matlab/. 
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Fig. 5 Speaker recognition performance (EER: left y-axis, solid line and minDCF: right y-axis, dash-dot line) 

on NIST 2006 as the elastic net penalty,  , is refined. 

Table 2: Speaker verification results on the NIST 2006 SRE Female Subset database 

Systems EER (%) minDCF 

i-SRC-LDA (DIM = 200) with ℓ1-constraint 4.73 0.025 

i-SRC-LDA (DIM = 200) with ℓ2-constraint 4.89 0.0253 

i-SRC-LDA (DIM = 200) with ℓ1 and ℓ2 -constraint 4.12 0.0213 

i-SRC-LDA (DIM = 200) with quadratic constraints [36, 41]  4.40 0.0233 

 

As shown in Fig. 5 and Table 2, the method using only ℓ1 norm or ℓ2 norm has slightly lower 

accuracy, showing the decrease in accuracy when a high or low degree of sparseness is enforced 

respectively (similar results are observed in [58]). Thus, it appears that using a combination of a sparsity 

constraint on γ, coupled with an ℓ2 norm, does not force unnecessary sparseness and offers the best 

performance. Furthermore, the ℓ1-minimization with quadratic constraints system as proposed in [36, 41] 
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has been included in Table 2 for comparisons. From the results, we could observe that the Elastic Net 

performs slightly better than the ℓ1-minimization with quadratic constraints system. 

4.6. Proposed dictionary design 

In recent years, apart from the study of different pursuit algorithms for sparse representation, the design of 

dictionaries to better fit a set of given signals has attracted growing attention [65-68]. As mentioned 

previously, McLaren et al. [15] proposed SVM background speaker selection algorithms for speaker 

verification. In this section, a similar idea, which we termed column vector frequency, is considered for 

choosing the dictionary of SRC based on the total number of times each individual column of the 

background dictionary (   ) is chosen, as shown in (20) 

    [                     
] 

 (     )  ∑ (     
 )         (   {

      
     

 

   

 

(20) 

where t is the column index of the background dictionary with values from 1 to    , P is the number of 

test trials,       is the sparse coefficient for the t
th
 column of the background dictionary and   is the 

frequency counter for the corresponding t
th
 column. 

Table 3: Results from NIST 2006 SRE using different dictionary datasets 

Dictionary EER (%) minDCF 

NIST 2004 4.12 0.0213 

NIST 2005 4.53 0.0245 

NIST 2004 + NIST 2005 4.33 0.0237 

 

First, the results using a number of different dictionary dataset configurations without any 

background speaker selection (with ℓ1+ℓ2 constraint,      ) are detailed in Table 3. It has be observed 

that using the NIST 2004 dataset alone gave the best performance, which is the same as the results 
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reported for SVM in [16]. Combining the NIST 2004 dataset with NIST 2005 resulted in the degradation 

of EER performance despite the significant increase in the number of impostor examples. 

Table 4: Performance on NIST 2006 female trials when using SRC background datasets refined by impostor 

column vector frequency. 

Dictionary EER (%) minDCF 

Full Dataset 4.33 0.0237 

500 highest ranked frequency 3.99 0.0212 

500 lowest ranked frequency 5.65 0.0371 

 

As an initial indicator of whether the column vector frequency is an adequate metric to represent the 

suitability of a background speaker, the 500 highest ranked and 500 lowest ranked background speakers 

from the NIST 2004 (2843 speakers) and NIST 2005 (673 speakers) datasets based on column vector 

frequency were selected on gender-dependent basis and the evaluation results are detailed in Table 4. The 

performance demonstrates that the dictionary chosen based on a column vector frequency basis is an 

appropriate measure of the impostor example.  Furthermore, to determine an optimal size for the 

dictionary, the experiment was repeated using only the highest R column vector frequencies with R 

varying from 300 to 3516 in steps of 200.  The resulting EER and minDCF were approximately 3.99% 

and 0.0212 respectively  for values of R in the range of 500 to 2500 as shown in Fig. 6(a), indicating that 

a smaller size dictionary can be used. In addition, a 79% relative reduction in computation time is 

achieved using the refined dictionary over the full dictionary (as shown in Fig. 6(b)), allowing a faster 

verification process. The refined dictionary with R=500 will be used for all subsequent experiments and 

will be shown to generalize well to the NIST 2010 dataset in Section 5. On the other hand, despite the 

significant improvement in time, the SRC is still somewhat slower than the i-SVM (1800s) and 

significantly slower than i-CDS scoring (244s) for scoring on the full database. 
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Fig. 6 Speaker recognition performance on NIST 2006 as the SRC dictionary is refined. (a) EER (left y-axis, 

solid line) and minDCF (right y-axis, dash-dot line) (b) Total time taken (in seconds) for computing the ℓ1-

norm score across all test utterances. 

Next, we compare the results reported in this paper with the best baseline system configuration 

reported in [41] which is based on ℓ1–minimization with ℓ1-constraint
6
, inclusion of identity matrix, 

Bnorm-(ℓ2-residual) scoring and TNorm (conventional). Using these configurations on NIST 2006 SRE 

database (female subset), an EER=4.55% and minDCF=0.0248 was achieved. It could be observed that 

similarly to other classifiers, incorporating TNorm does improve the EER performance (from 4.73%). 

Furthermore, comparing the result with Table 2 and Table 4, we observed that sparse representation based 

on a combination of ℓ1 and ℓ2 constraint on   outperformed the proposed system in [41] significantly, 

with a relative EER reduction of 12.3%. This improvement seems to be mainly attributable to the degree 

of sparseness constraint on γ. In addition, a faster verification process can be achieved with a smaller 

                                                 
6
 The ℓ1-constraint refers to the constraint on   (as discussed in section 4.5) and not the quadratic constraints on the 

error tolerance as indicated in [41] M. Li, X. Zhang, Y. Yan, and S. Narayanan, "Speaker Verification using 

Sparse Representations on Total Variability I-Vectors," in Proc. of INTERSPEECH, 2011.. 
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dictionary refined based on column vector frequency, as opposed to the direct heuristic replacement of the 

dictionary with TNorm samples in [41].  

5. Speaker Recognition Experiments on NIST 2010 SRE 

In this section, the classifiers were evaluated using the larger and more contemporary extended NIST 

2010 database, in order to see the database independency of the results. Results are reported for the five 

evaluation conditions with normal vocal effort, corresponding to det conditions 1-5 in the SRE’10 

evaluation plan [71], which include int-int, int-tel, int-mic and tel-tel.  

We used exactly the same UBM and total variability configuration  as in Section 4. The only 

difference lay in the amount of data used to train the UBM, total variability parameters, WCCN, LDA and 

SVM impostor with respect to the evaluation conditions. We added the Mixer 5 and interview data taken 

from the follow-up corpus of the NIST 2008 SRE for interview (int) conditions, NIST 2005 and 2006 

SRE microphone segments for microphone (mic) conditions and NIST 2006 SRE for telephone (tel) 

conditions. Table 5 summarises the datasets used to estimate our system parameters. Similarly to the 

previous setup (in Section 4.2), any common utterances from speakers in the NIST 2008 follow up and 

NIST 2010 databases have been excluded from the training set. 

The performance of each classifier for each condition is given in Table 7. The results show that i-

SRC (     ) obtained the best performance in terms of EER, followed by i-CDS and i-SVM. 

Interestingly, the i-SRC approach performs better than all SVM variants in all conditions with just a 

single dictionary, designed according to the column vector frequency (X = 500) in Section 4.6, which 

indicates that the dictionary generalises well to different types of common conditions. On the other hand, 

for SVM-based systems, different background data sets need to be constructed separately for different 

conditions (i.e int-int, int-tel, int-mic and tel-tel) [72, 73] Table 6 shows the results with the best 

configuration. In addition, the i-SRC outperforms the i-CDS, which is of interest since both do not require 

a training phase and additionally do not require any form of score normalisation based on a set of 

impostor models, or cohort (i.e Z- or T-Norm) to achieve good performance. 
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Next, we explore whether SRC provides complementary information to the conventional baseline, 

since the study of systems which fuse well has held sustained interest in the speaker recognition 

community in recent times [69]. The fused results of the baseline system (i-CDS) with i-SVM or i-SRC 

are shown in Table 7. The fusion weights are estimated using the NIST 2008 evaluation data. The results 

demonstrated that the fusion of i-CDS and i-SRC is better than the fusion of i-CDS and i-SVM. In 

contrast, the fusion of i-SRC and i-SVM (shown in Table 7) results in minimal improvement in EER 

since both of the classifiers have very similar classification decisions for most of the test points, as 

explained in Section 2.3. 

Table 5: Corpora used to estimate UBM, WCCN, LDA, SVM impostors, Z- and T-norm data for evaluation 

on NIST 2010 SRE. 

 Switchboard II Mixer 5 NIST 2004 NIST 2005 NIST 2006 

NIST 2008 

follow up 

UBM   x x x  

t-norm   x    

z-norm    x   

T x  x x x x 

WCCN  x x x x x 

LDA x x x x x x 

 

Table 6: Speaker verification performance on the extended NIST 2010 evaluation protocol. Note that        

corresponds to the DCF with speaker detection cost model parameters of CMiss = 1, CFalseAlarm = 1, PTarget = 

0.001  

Common Condition 

i-CDS i-SRC i-SVM 

EER DCFnew EER DCFnew EER DCFnew 

1 (int-int) 3.05 0.557 2.91 0.522 3.40 0.591 

2 (int-int) 4.51 0.654 4.01 0.597 4.81 0.690 

3 (int-tel) 4.72 0.682 4.32 0.628 5.13 0.701 

4 (int-mic) 4.12 0.599 3.80 0.543 4.44 0.651 

5 (tel-tel) 3.35 0.568 2.95 0.518 3.71 0.598 
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Table 7: Fused speaker verification performance of JFA-SVM, JFA-CDS or JFA-SRC with JFA on extended 

NIST 2010 SRE database with speaker detection cost model parameters of CMiss = 1, CFalseAlarm = 1, PTarget = 

0.001  (EERx100, minDCFx1000) 

System 

Common 

Condition 1 

Common Condition 

2 

Common Condition 

3 

Common Condition 

4 

Common Condition 

5 

EER minDCF EER minDCF EER minDCF EER minDCF EER minDCF 

i-CDS + i-SRC  2.34 0.449 3.51 0.546 3.65 0.573 3.47 0.498 2.46 0.444 

i-CDS + i-SVM 2.63 0.507 4.17 0.591 4.44 0.630 3.78 0.554 2.92 0.513 

i-SVM + i-SRC 2.85 0.510 3.81 0.580 4.01 0.601 3.65 0.516 2.73 0.485 

6. Conclusion 

In this paper, we investigated the different types of sparseness methods and dictionary composition of 

sparse representation classification (SRC) for speaker verification using i-vectors from the total variability 

model. Inspired by the principles of the sparse representation model and based on the intuitive hypothesis 

that a speaker can be represented by a linear combination of training samples from the same speaker, we 

first compute the sparse representation through ℓ1-minimization, and classification is achieved based on 

an ℓ1-norm ratio. Since SRC has only recently appeared in the context of speaker recognition, we 

evaluated a range of existing techniques for sparse representation classification and examined the effect 

on speaker recognition performance. 

First, we observed that the inclusion of the identity matrix in the dictionary results in a relative 

reduction of 6% in EER on NIST 2006 SRE, and appear to be an essential aspect of the dictionary 

composition. Next, a sparseness method that uses a combination of ℓ1 and ℓ2 (Elastic net), offers better 

performance than one with only an ℓ1 constraint, since the latter enforces a high degree of sparseness 

which leads to a decrease in accuracy. Finally, motivated by background speaker selection for the SVM-

based system, we proposed the SRC background dataset selection based on column vector frequency. We 

demonstrated that a smaller dictionary refined by column vector frequency could be used, allowing a 

faster verification process. Furthermore, we showed that the dictionary chosen for development on NIST 

2006 SRE generalised well to the evaluation on NIST 2010 SRE corpus for different evaluation condition, 
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as opposed to SVM background data, which require significant amounts of tuning based on the evaluation 

condition.  

 In addition, experiments on NIST 2010 database validated the findings that the sparse representation 

approach can outperform the best performance achieved by CDS or SVM. Finally, by fusing i-SRC with 

the conventional i-CDS system, we show that the overall system performance is improved, providing a 

relative reduction in EER of 8 – 19% over i-SRC alone, and the fusion of i-CDS with i-SRC 

outperformed the fusion of i-CDS with i-SVM in the range of 8-18% relative reduction in EER. Although 

care has been taken in this paper to investigate many aspects of SRC-based speaker recognition, it is 

highly possible that these results can be further improved with more research, for example into areas such 

as score normalization techniques for sparse representation, which remains an underexplored problem in 

the literature for SRC-based recognition applications. 
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