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Abstract 

Dimensionality reduction, clustering and visualisation 
methods proposed in recent years have afforded new 
possibilities for the analysis of gene expression data. 
However, efficient, novel techniques for processing and 
representing microarray data are still required. We 
propose the use of the discrete cosine and sine 
transformations for dimensionality reduction of 
microarray data. These techniques have found powerful 
applications in the signal processing domain. Gaussian 
mixture models (GMMs) are then used for clustering and 
visualisation of the reduced-dimension data. Results on 
human fibroblast microarray data reveal that the discrete 
sine and cosine transforms can greatly reduce the 
dimensionality of gene expression data while preserving 
good clustering results. GMMs are shown to produce 
improved clustering results according to an intra-class 
cluster tightness criterion, in addition to a new two-
dimensional representation whose axes afford the 
possibility of physical interpretations. 

Keywords:  Dimensionality reduction, discrete cosine 
transform, discrete sine transform, Gaussian mixture 
model, clustering, visualisation, microarray, gene 
expression. 

1 Introduction 

An important problem in the area of microarray analysis 
is the organization of large-dimensional gene expression 
data and its presentation in a format that can emphasize 
the similarities and differences between different gene 
expressions, thus facilitating their biological 
interpretation. 

Literature in this area spans clustering techniques such as 
the K-means algorithm (Datta 2003), self-organising 
maps (Törönen et al. 1999), cellular neural networks 
(Zhang et al. 2003), and visualisation techniques such as 
image maps and dendrograms (Iyer et al. 1998), 
Sammon’s algorithm (Törönen et al. 1999) and 2-D 
scatter plots (Datta 2003).  
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There have also been a number of contributions in 
microarray data projection and dimensionality reduction, 
such as the application of principal component analysis 
(PCA) (Raychaudhuri, Stuart and Altman 2000, Misra et 
al. 2002, Datta 2003), independent component analysis 
(ICA) (Liao et al. 2002) and singular value 
decomposition (Wall, Rechsteiner and Rocha 2003). 

Gene expression data is usually generated in high 
dimensionality at laboratories, however often some of the 
dimensions are correlated, creating redundancy. 
Dimensionality reduction is a promising approach 
because it extracts the most important components of the 
data and allows for lower complexity in subsequent 
processing, and also facilitates visualisation of clustered 
data. 

A further argument for dimensionality reduction arises 
from the fact that many microarray databases have a very 
large dimension p relative to the number of gene 
observations n to be clustered. Previous researchers (e.g. 
McLachlan, Bean and Peel 2002) have found that this 
situation, known as the “p > n” problem can often cause 
singular estimates of the within-cluster covariance 
matrices. Reducing the dimension, p, is one means of 
mitigating this problem with microarray clustering. 

In this paper, we propose the use of the discrete cosine 
transform (DCT) and discrete sine transform (DST) for 
reducing the number of dimensions in microarray data, 
and Gaussian mixture models (GMMs) for clustering and 
visualisation of the reduced-dimension data. The DCT 
and DST provide decorrelation, ordering, and 
dimensionality reduction, while GMMs provide 
probability density function modeling. The use of DCTs 
as a front end and GMMs as a back end is well 
established in some signal processing applications, where 
they have made substantial contributions to the state of 
the art. 

This paper is organized as follows. Section 2 provides a 
brief introduction to microarray measurements of gene 
expression and their analysis. In section 3 the DCT and 
DST are introduced, and their use in modelling gene 
expression profiles is explained. The application of 
Gaussian mixture models to the modelling of microarray 
data is described in section 4. In section 5, dimensionality 
reduction methods, clustering techniques and a measure 
of cluster tightness are presented, and the results of these 
experiments and visualisation of the reduced-dimension 
data are discussed in section 6. 



2 Introduction to Microarray Analysis 

To a large extent, the protein components of each cell 
dictate its function and response to various environmental 
changes. Each cell in an organism contains the 
information necessary to produce the entire repertoire of 
proteins the organism can specify, and their behaviour is 
in turn largely determined by the genes the cell is 
expressing.  

DNA microarrays rely on the hybridization properties of 
nucleic acids to monitor DNA or RNA abundance in 
different cells over time, and these abundance levels give 
a quantitative description of the extent to which gene 
expression is occurring. In microarray experiments, there 
are certain systematic sources of variation, usually due to 
specific features of the microarray measurement 
technology, which should be corrected prior to further 
analysis. This normalization is often performed by 
subtracting the background (or average value) from the 
signal for each gene. The pre-processed data can be 
visualised as a matrix, with each row consisting of 
expression values at different time instants or for different 
experimental conditions for a single gene. Most 
experiments typically contain between 4000 to 8000 rows 
(genes) and between 4 and 80 columns (gene expression 
values). 

Eisen et al. (1998) found that larger groups of clustered 
genes tend to share common roles in cellular processes. 
Hence, a major use of microarray data is to classify genes 
with similar expression profiles into groups in order to 
investigate their biological significance. A clustering tree 
(Iyer et al. 1998), for example, can show how genes form 
groups. A wide variety of clustering algorithms are 
employed for these purposes. Regardless of how 
clustering is performed, however, the purpose of such 
classification is to provide summarized information about 
gene similarity to biological practitioners. Judicious use 
of statistical techniques and an appropriate visualization 
can help to achieve this objective. 

3 The Discrete Cosine and Sine Transforms 

3.1 Principal Component Analysis 

Principal Component Analysis (PCA) is a classical 
statistical technique that can be used to find structure in 
multidimensional data sets. PCA uses eigenvalue 
decomposition to estimate a series of components that are 
ordered according to what proportion of the variance of 
the K original variables is contained in each component. 
These principal components are mutually uncorrelated 
and orthogonal. The principal components are defined by 
the eigenvectors of the K×K covariance matrix of the 
microarray data, and from these, the projection of the ith 
gene along the jth principal component is calculated as 
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where aik is the kth element of the ith gene expression 
profile, and vjk is the kth element of the jth principal 
component. Since the first few principal components 

contain more of the variance than the later components, 
aik can be reasonably well approximated by including 
only the first few components vj in (1), i.e. by summing 
from k=1 to some reduced dimension K’<K. This method 
of dimensionality reduction has previously been used 
with some success on various microarray databases 
(Raychaudhuri, Stuart and Altman 2000, Misra et al. 
2002, Datta 2003), and hence is employed for the purpose 
of comparison in the experiments of sections 5 and 6 
below. 

3.2 The Discrete Cosine Transform 

The purpose of the discrete cosine transform is to 
transform a data sequence into another domain, in order 
to take advantage of some characteristics of the data so 
that the energy of the transformed data is localized into a 
small number of coefficients. The discrete cosine 
transform is real valued, orthonormal, has near-optimal 
properties for energy compaction of highly correlated 
data, and can be computed more efficiently than other 
similar transforms (e.g. PCA, and ICA). 

The DCT represents a data sequence x(n) in terms of its 
cosine series expansion with coefficients Ck, calculated as 
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where k = 0 , … , K-1, n is the sequence sample index, K 

is the length of the input sequence x(n), Kα /10 =  and 

Kαk /2=  for k = 1 , … , K-1. The first two DCT 
coefficients in particular have the following 
interpretations: 

C0 is the arithmetic mean of the data sequence x(n), and 
thus corresponds to the average gene expression ratio. 

C1 is the amplitude of a cosine wave of period 2K, and 
practically behaves as an approximation to the gradient of 
the data sequence x(n). Thus, C1 gives a rough 
approximation to the overall shape of the expression 
pattern for a gene. 

Possibly the main advantage of the DCT and DST for 
microarray analysis is that the gene expression profiles 
are always effectively projected onto the same axes. In 
the case of low-order coefficients such as C0 and C1, 
these axes allow consistent interpretation from a 
biological, rather than purely statistical, perspective as 
suggested above. This is in contrast to PCA, where the 
axes onto which the gene expression profiles are 
projected are data-dependent, and will therefore be 
different from one data set to another. This is a particular 
advantage for visualization purposes, where it is desirable 
for axes to be consistent and easily interpreted by an 
observer. 

3.3 The Discrete Sine Transform 

The discrete sine transform is similar to the DCT, and is 
real, orthonormal, has excellent compaction properties for 
uncorrelated data sequences, and can be computed as 
efficiently as the DCT. The DST is defined as 
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for k = 0 , … , K-1. An example of the application of the 
DCT and DST is given in Figure 1. Note that most of the 
energy in Ck and Sk is concentrated in the first few 
coefficients, hence the use of the DCT and DST in speech 
and audio compression applications. Higher order 
coefficients tend to model detailed variations in the data 
sequence x(n), possibly including noise (removal of 
which is desirable for analysis purposes). 
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Figure 1: An example gene expression profile (a) and 
its DCT (b) and DST (c) coefficients. In this example, 

the DCT provides a more compact representation 
than the DST. 

4 Gaussian Mixture Models 

Gaussian Mixture Models (GMMs) comprise a weighted 
sum of Gaussian probability density functions, or 
mixtures, and are used in applications with probability 
density functions that are generated by more than one 
‘source’. In microarray analysis, GMMs can be used to 
estimate the relative contributions of each source (or 
cluster) to the overall probability density function, so that 
the mean of each Gaussian mixture an estimate of the 
cluster centroid. GMMs are usually parameterized by 
their mean vectors µm, covariance matrices Σm and 
mixture weights wm, and the overall probability density 
function is given as 
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The number of Gaussian mixtures M determines the detail 
with which the probability density function of the 
sequence x = {x1 ,…, xK} is modelled. The parameters of 
GMMs are often estimated using the EM algorithm 
(Dempster, Laird and Rubin 1977). 

A one-dimensional example of distribution modelling is 
shown in Figure 2, where a mixture model (solid line) is 
the sum of four individual Gaussian probability density 
functions (dashed lines) with different means, variances 
and weights. The individual mixtures can be considered 
to represent possible clusters in the gene expression data. 

In this example, three of the probability density functions 
have very similar means and overlap substantially, 
indicating either that the clusters are not easily separable 
or that all three are modelling the same cluster. 
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Figure 2: Histogram of the distribution of C0 for 
fibroblast microarray data and its approximation 

using a one-dimensional GMM with M = 4 mixtures. 

In this paper, two-dimensional Gaussian mixture models 
are estimated for human fibroblast data that has been 
transformed using the DCT and then truncated to just two 
coefficients (C0 and C1). Thus, peaks in this probability 
density function correspond to regions of the data where 
there are a relatively large number of genes with similar 
expression profiles. The location of such peaks 
corresponds to the cluster centroids µm, while the 
‘sharpness’ Σm of such peaks corresponds to the spread of 
gene data about the centroids, or the cluster tightness. 

5 Dimensionality Reduction and Clustering 

5.1 Human Fibroblast Data 

The techniques discussed in this paper were evaluated on 
the data set collected from experiments exploring the 
response of fibroblasts to serum, performed by Iyer et al. 
(1998). The data were derived from microarrays with 
temporal measurements of the mRNA levels made at K = 
12 non-equal intervals of  0, 0.25, 0.5, 1, 2, 4, 6, 8, 12, 16, 
20, and 24 hours. The same subset of N = 517 genes used 
in (Iyer et al. 1998) were considered in this paper, and the 
log2 expression ratio was used during clustering. 

5.2 Dimensionality Reduction 

Analysis of the log gene expression data set was then 
performed on the raw data itself, and on the DCT and 
DST coefficients of the raw data. Thus, two further data 
sets were obtained by applying the DCT (C0 and C1 from 
equation (2) were used) and DST (S0 and S1 from 
equation (3) were used) to the raw data set. The objective 
of this comparison was to determine whether the 
clustering accuracy obtained from the raw data could be 
preserved even when the data dimensionality was reduced 
from 12 to 2. 

The motivation for selecting only the first two DCT and 
DST coefficients stems from previous experimental work 
on yeast sporulation data (Epps and Ambikairajah 2004), 
in which various combinations of DCT coefficients were 
compared, revealing that the statistical spread of classes 
clustered using C0 and C1 was only 10% greater than that 
of classes clustered using the original data. 

A further third data set was generated by applying 
principal component analysis to the raw data set. The 



objective of this comparison was to determine whether 
the DCT and DST would provide comparable clustering 
accuracy to an existing dimensionality technique from the 
literature. PCA was chosen as a standard for comparison 
because of its frequent use as a dimensionality reduction 
technique in prior microarray analysis literature (e.g. 
Raychaudhuri, Stuart and Altman 2000, Misra et al. 2002, 
Datta 2003). 

Although the relatively small dimensions of the raw data 
set used in this work make the use of a wide range of 
analysis techniques feasible without requiring any 
reduction in the number of dimensions, other applications 
and data sets with much larger length N and dimension K 
may benefit even more greatly from dimensionality 
reduction techniques such as these. 

5.3 Clustering Techniques 

Clustering was then performed on the raw and 
transformed data sets described in section 5.2. In keeping 
with the original classification of the fibroblast data into 
ten classes (clusters A to J) (Iyer et al. 1998), the number 
of clusters was chosen as M = 10. In order to remove any 
dependency of this comparison upon a particular 
clustering technique, four techniques commonly used in 
pattern recognition were selected: 

� The LBG algorithm (Linde, Buzo and Gray 1980), 
with splitting performed one cluster at a time 

� Self-organizing maps (Kohonen 1980) 

� The K-means algorithm (Gersho and Gray, 1993) 

� The EM algorithm (Dempster, Laird and Rubin 
1977) applied to 10-mixture GMMs 

Where clustering was performed on transformed data 
sets, the cluster membership index of each vector was 
retained. The raw data set was then clustered based upon 
these indices, in preparation for use by the cluster 
tightness criterion described in section 5.4. 

5.4 Cluster Tightness Measure (CTM) 

In order to measure the efficacy of the clustering, a 
measure based upon the standard deviations of each 
cluster along each dimension was devised. This measure 
was normalized according to the global standard 
deviation along each dimension, so that 
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where m
kσ  is the standard deviation of the m’th cluster 

along the k’th dimension, G
kσ  is the standard deviation 

across all data along the k’th dimension, K is the length of 
the input sequence and M is the number of clusters. If 
CTM is zero, this implies that all data lies on the cluster 
centroids, while larger values of CTM imply that clusters 
are spread widely and may overlap. 

The cluster tightness measure is a within-class estimate of 
classification effectiveness, however it is possible to 
devise inter-class measures also, to better measure the 

separation between the various classes. Recent literature 
(Shah 2004) has also shown that a useful and more 
biologically-motivated criterion based on Significance 
Analysis of Microarray (SAM), used widely in the 
bioinformatics area, can also provide good insight into 
the effects of dimensionality reduction and clustering. 

Of the four clustering methods employed in section 5.3, 
the LBG algorithm is the only one that does not use 
random initialization. In order to improve the accuracy of 
CTM for self-organizing maps, the K-means algorithm 
and GMMs, clustering was repeated five times for these 
methods, and the cluster tightness measures averaged to 
provide the final estimate of CTM. 

6 Results 

6.1 Comparison of Dimensionality Reduction 
Techniques 

Clustering based on 2-dimensional DCT or DST 
coefficients generally achieved within 10% of the cluster 
tightness attained by clustering the raw data directly. 
From this evidence that the accuracy of clustering is not 
significantly impeded by dimensionality reduction, 
clustering based upon reduced-dimension data appears to 
be a powerful tool for efficiently analyzing large 
dimension microarray data sets. The cluster tightness 
measurements yielded similar results for both DCT and 
DST, as given in Table 1. 

Table 1 also reveals that similar levels of cluster tightness 
can be achieved using the DCT, the DST or PCA. It is 
suggested that the DCT or DST are to be preferred over 
PCA since they are faster and their axes may be more 
readily interpreted physically. This is because the axes 
resulting from PCA are determined by the data, and thus 
vary from one data set to the next. 

A further result from Table 1 is that GMM-based 
clustering with the EM algorithm generally produces 
tighter clusters for these data than the LBG algorithm, 
self-organizing maps and the K-means algorithm. 

 Cluster tightness measure CTM 

Clustering features LBG SOM K-M EM 

Raw data 0.330 0.325 0.331 0.316 

DCT coeff’ts C0, C1 0.362 0.354 0.358 0.340 

DST coeff’ts S0, S1 0.363 0.345 0.364 0.351 

Two principal comp’ts 0.357 0.328 0.355 0.348 

Table 1: Cluster tightness for raw and transformed 
data sets, with clustering performed by the LBG 

algorithm, self-organizing maps (SOM), the K-means 
algorithm (K-M) and GMMs with the EM algorithm. 

6.2 GMM-Based Visualisation 

For the purposes of visualizing the gene expression data, 
GMMs have the advantage that the overall density 
function is estimated, rather than simply the cluster 
means or centroids, as in the LBG, SOMs or K-means 



approaches. Thus, for two-dimensional GMMs, a two-
dimensional visualisation based upon the probability 
density function can be generated by calculating the 
probabilities at all positions on a two-dimensional grid 
using (3), and plotting the contours of equal probability, 
as seen in Figure 3. In this figure, the cluster centroids 
from (Iyer et al. 1998) are marked for reference, although 
clearly the use of a different clustering method here has 
produced different centroids. Ultimately, the evaluation 
of which clustering technique produces the most 
informative centroids is subjective, and requires specialist 
biological interpretation.  

Peaks in Figure 3 represent regions where there are large 
concentrations of genes with similar temporal expression 
profiles. This allows a molecular biologist to put the 
similarity of a pair of gene expression profiles into the 
context of the overall distribution of all profiles. A 
Euclidean distance measure is often used in microarray 
analysis, however the GMM-based representation of 
human fibroblast data, which reveals large variations in 
density (compare the peak near cluster B to that near 
cluster J in Fig. 3), demonstrates that the similarity of a 
pair of gene expression profiles depends on more than 
just the Euclidean distance. 
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Figure 3: 2-D visualisation of the GMM-based probability density function estimate based upon the first two 
DCT coefficients of fibroblast log expression data. The original classification into ten clusters (A to J) from Iyer 

et al. (1998) is shown for the purpose of comparison. As mentioned in section 3.2, the horizontal and vertical axes 
can be biologically interpreted as the average within-gene expression value and the average within-gene 

expression gradient. 

7 Conclusion 

This paper has demonstrated a novel, efficient technique 
for dimensionality reduction and data representation 
using the DCT or DST and GMMs. Using a measure of 
cluster tightness to evaluate clustered human fibroblast 
serum data, the DCT and DST were shown to provide 
similar clustering performance to the raw data, despite a 
6-fold reduction in dimensionality. The DCT and DST 
have the additional benefits of lower computational 
complexity and biologically meaningful projection axes. 
Clustering using GMMs yielded tight clusters and a 
probability density function that can be visualized in two 
dimensions to distinguish patterns of similarity in gene 
expression data. 

Future work will focus on broader comparisons with 
other dimensionality reduction techniques such as ICA 
and Sammon’s algorithm across several databases, and 
also on applications of this approach to visualisation of 
various other kinds of data. 
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