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ABSTRACT 
 
Analysis of microarray gene expression data using signal 
processing and statistical techniques has received 
considerable interest in recent years, however the 
problem of organizing and visualizing these large data 
sets is still a pressing issue. This paper proposes the use 
of the discrete cosine transformation (DCT) to reduce the 
large number of dimensions of the microarray data, 
thereby simplifying the subsequent clustering problem, 
aiding visualization and hence decision-making. Results 
of the application of the DCT and three clustering 
techniques to yeast sporulation data show that, similarly 
to the use of principal components analysis (PCA), the 
dimensionality of gene expression data can be reduced by 
a factor of three while still achieving good clustering. 
 
 

1. INTRODUCTION 
 
Microarray data are characterized by both large 
dimensions and non-trivial relationships between the 
various constituent gene expressions. A major challenge 
in the area of microarray analysis is to organize the gene 
expressions so as to emphasize their similarities and 
differences thus facilitating their biological interpretation, 
while simultaneously preserving the complex 
relationships existing between them. 

Much of the existing literature in this area has 
focused on techniques for clustering the gene expression 
data, including the K-means algorithm [2], Sammon’s 
algorithm [2, 7], self-organising maps [7] and cellular 
neural networks [8]. 

Research effort has also been directed towards data 
projection and dimensionality reduction techniques such 
as principal component analysis (PCA) and independent 
component analysis (ICA) [2, 5] and the combination of 
the two. Dimensionality reduction is a promising 
approach because it extracts the important characteristics 
of the data and allows for lower complexity in subsequent 
processing. 

In this paper, we propose the use of the discrete 
cosine transform (DCT) for reducing the number of 
dimensions in microarray data. The motivation for 
applying the DCT arises from its extensive successful 
usage in the areas of speech and image processing for 
decorrelation, ordering and dimensionality reduction 
purposes. 

This paper is organized as follows. Section 2 provides 
a brief introduction to the DCT and its application to 
modeling gene expression profiles. In section 3, 
dimensionality reduction methods, clustering techniques 
and a measure of cluster tightness are presented, and the 
results of these experiments are discussed in section 4. 
 

2. THE DISCRETE COSINE TRANSFORM 
 
The discrete cosine transform (DCT) is an approximation 
to the Karhunen-Loeve Transformation, and is used to 
orthogonalize a given vector and reduce its 
dimensionality. The DCT represents a data sequence x(n) 
in terms of its cosine series expansion with coefficients ck, 
calculated as follows: 
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where k = 0 , … , K-1, n is the sequence sample index and 
K is the length of the input sequence x(n). 

Typically, the first few DCT coefficients contain 
most of the energy of the data sequence, and hence the 
DCT is often used for data compression applications such 
as speech and image coding. As seen in the example of 
Fig. 1, a data sequence (obtained at various time instants), 
such as a gene expression profile, can be modeled with 
reasonable accuracy using only the first two or three DCT 
coefficients. Hence, the DCT is a good tool for 
dimensionality reduction in this context, and it is this 
property that is exploited in the ensuing sections of this 
paper. 
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Figure 1. An example gene expression profile from the 
yeast sporulation data [1] (solid), and its 
reconstructions using the first one (a), two (b) and 
three (c) DCT coefficients (dashed). 
 

The first two DCT coefficients in particular have the 
following interpretations: 
� c0 is the arithmetic mean of the data sequence 

x(n), and thus corresponds to the average gene 
expression ratio. 

� c1 is the amplitude of a cosine wave of period 
2K, and practically behaves as an approximation 
to the slope of the data sequence x(n). Thus, c1 
gives a rough approximation to the overall shape 
of the expression pattern for a gene. 

The higher order DCT coefficients model detailed 
variations in the data sequence x(n), which may include 
noise (removal of which is preferable for clustering 
purposes). 
 

3. DIMENSIONALITY REDUCTION AND 
CLUSTERING 

 
3.1. Yeast sporulation data 
 
The techniques discussed in this paper were evaluated on 
the data set collected from experiments examining the 
sporulation of budding yeast by Chu et al. [1]. The data 
were derived from DNA microarrays containing nearly 
every yeast gene, with measurements of the mRNA levels 
made at non-equal intervals of  0, 0.5, 2, 5, 7, 9, and 11 
hours. 

Of the 6118 known and predicted genes in the 
original data set, more than 1000 showed significant 
changes in mRNA levels during sporulation, and of these 
about half were induced during that time [1]. A subset of 
only 512 genes were considered in this paper (similarly to 
[2]), comprising genes which are positively expressed and 
whose expression levels met a pre-determined threshold 
[1]. Thus the data set used in this work consisted of N = 

512 genes with temporal profiles measured at 7 different 
time instants, i.e. K = 7 dimensions. 
 
3.2. Dimensionality reduction 
 
Analysis of the gene expression raw data set described in 
section 3.1 was then performed on the raw data itself, on 
the DCT coefficients of the raw data, and on the principal 
components of the raw data. 

DCT coefficients were obtained by applying equation 
(1) to each temporal profile (vector) of the raw data, and 
forming four transformed data sets: one comprising the 
first coefficient c0 of all vectors, another comprising the 
first two coefficients c0 and c1, another comprising the 
first three coefficients c0, c1 and c2, and another 
comprising all seven DCT coefficients. 

Another transformed data set was also obtained by 
taking the first two principal components of the raw data, 
following PCA. 

Although the dimensions of the raw data set used in 
this work make the use of a wide range of analysis 
techniques feasible without requiring any reduction in the 
number of dimensions, other applications with much 
larger length N and dimension K will benefit even more 
greatly from dimensionality reduction techniques such as 
these. 
 
3.3. Clustering techniques 
 
Clustering was then performed on the raw and 
transformed data sets described in section 3.2. In keeping 
with the original manual classification of the yeast 
sporulation data into seven temporal classes, comprising 
Metabolic, Early I, Early II, Early Middle, Middle, Mid 
Late and Late [1], the number of clusters M was chosen as 
seven. 

In order to remove any dependency of this 
comparison upon a particular clustering technique, three 
techniques commonly used in the digital signal processing 
field (especially speech processing) were chosen: 
� The LBG algorithm [6], with splitting performed 

one cluster at a time (clusters with largest 
variance are split first) 

� Self-organising maps [4] 
� The K-means algorithm [3] 
Where clustering was performed on transformed data 

sets, the cluster membership index of each vector was 
retained. The raw data set was then clustered based upon 
these indices, in preparation for use by the cluster 
tightness criterion described in section 3.4. 
 
3.4. Cluster tightness measure (CTM) 
 
In order to measure the efficacy of the clustering, a 
measure based upon the standard deviations of each 



cluster along each dimension was devised. Since the data 
will occupy different ranges depending on the type of 
dimensionality reduction technique employed, this 
measure was normalized according to the global standard 
deviation along each dimension. Thus, 
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where  is the standard deviation of the m’th cluster 

along the k’th dimension,  is the standard deviation 
across all data along the k’th dimension, K is the length of 
the input sequence and M is the number of clusters. If 
CTM is zero, this implies that all data lies on the cluster 
centroids, while larger values of CTM imply that clusters 
are spread widely and may overlap. 
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Of the three clustering methods employed in section 
3.3, the LBG algorithm is the only one that does not use 
random initialization. In order to improve the accuracy of 
CTM for self-organising maps and the K-means algorithm, 
clustering was repeated five times for these methods, and 
the cluster tightness measures averaged to provide the 
final estimate of CTM. 
 

4. RESULTS 
 
4.1. Comparison of DCT and PCA 
 

The cluster tightness measurements described in section 3 
yielded similar results for the reduction of the dimension 
from 7 to 2 using both DCT and PCA, as seen in Table 1. 
Clustering based on 2-dimensional DCT or PCA 
coefficients generally achieved within 10% of the cluster 
tightness attained by clustering the raw data directly. 
From this evidence that the accuracy of clustering is not 
significantly impeded by dimensionality reduction, 
clustering based upon reduced-dimension data appears to 
be a powerful tool for efficiently analyzing large 
dimension microarray data sets. 
 

Table 1. Cluster tightness for raw and transformed 
data sets, with clustering performed by the LBG 

algorithm, self-organising maps (SOM) and the K-
means algorithm. 

 Cluster tightness measure CTM 
Clustering features LBG SOM K-means 

Gene expression raw data 0.286 0.285 0.316 
DCT coefficient c0 0.567 0.436 0.546 
DCT coefficients c0, c1 0.315 0.296 0.328 
DCT coefficients c0, c1, c2 0.300 0.294 0.333 
All DCT coefficients 0.282 0.288 0.317 
Two principal components 0.318 0.296 0.315 

 

Experiments using one (c0), two (c0 and c1), three (c0, 
c1 and c2) and all DCT coefficients as the clustering 
features showed that while a single DCT coefficient is 
inadequate for clustering purposes, the use of c0 and c1 
achieved approximately 10% of the cluster tightness 
obtained by clustering based on all DCT coefficients. This 
confirms the hypothesis from section 2 that the majority 
of the data sequence energy resides in the first two DCT 
coefficients for this particular data set. 

A further result from Table 1 is that the LBG 
algorithm and self-organizing maps produce slightly 
tighter clusters for these data than the K-means algorithm. 
 
4.2. Graphical comparison of DCT and PCA 
 

From the results of section 4.1, it is reasonable to 
characterize the gene expression profiles using two DCT 
or PCA coefficients, and hence also to plot them in two 
dimensions. Figure 2 shows the first two principal 
components of the gene expression data clustered using 
K-means, similarly to Fig. 2B in [2]. 
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Figure 2. Gene expression data for yeast sporulation 
transformed using the first two principal components 
and clustered using the K-means algorithm. 
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Figure 3. Gene expression data for yeast sporulation 
transformed using the first two DCT coefficients and 
clustered using the LBG algorithm. 



By way comparison, Fig. 3 shows the first two DCT 
coefficients of the same data clustered using the LBG 
algorithm. Subjectively, the data organized using the DCT 
has classes at least as distinctly separate as in Fig. 2. 
Further, the DCT-based two-dimensional data 
visualization in Figure 3 offers axes that have physical 
interpretations (approximate slope of gene expression 
ratio vs. average gene expression ratio), unlike that of 
Figure 2. 
 
4.3. Reordering of gene expression data using DCT 

coefficients 
 

As a final demonstration of the application of the DCT to 
gene expression data, the original raw data set (Fig. 4(a)) 
was reordered using c0 and c1. The resulting clusters were 
then arranged in order of their temporal classes as 
illustrated in Fig. 4(b), showing the Metabolic, Early I, 
Early II, Early Middle, Middle, Mid Late and Late 
temporal classes from top to bottom. This figure should be 
compared with Fig. 5A in [1], which shows a similar 
result. 
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Figure 4. Genes induced during sporulation – (a) 
original unordered data set and (b) genes clustered 
using first two DCT coefficients, with clusters 
arranged by time of first induction. Solid black 
horizontal lines indicate cluster boundaries. 
 

5. CONCLUSION 
 
Using a measure of cluster tightness to evaluate clustered 
yeast sporulation gene expression data, this paper has 
shown that substantial reduction of the dimensionality is 

possible without adverse effects to the tightness of the 
clustering. In particular, this paper has shown that use of 
the DCT can provide similar clustering performance to 
PCA, with the additional benefits of lower computational 
complexity and the possibility of physical interpretation of 
the transformed data. Future work will concentrate on 
examining whether the demonstrated good performance of 
the DCT as a dimensionality reduction technique 
generalizes to other microarray data sets. Additionally, the 
applicability of other speech and image processing 
techniques such as GMMs and HMMs to microarray data 
will also be investigated. 
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