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ABSTRACT:  Speaker adaptation is an important technique that can compensate for the 
mismatch between training data and the vocal characteristics of an individual user in a speech 
recognition system, however this can come at the cost of increased computational complexity. 
This paper reports a detailed comparison of four different affine transformation configurations 
for speaker adaptation, and the evaluation of their recognition accuracy, complexity and 
memory requirements. Results of this comparison show that for optimum parameter choices, 
simpler transformation configurations are capable of producing accuracies close to those of the 
conventional full transformation, allowing the computational complexity to be reduced by one to 
two orders of magnitude. 

1. INTRODUCTION 

Most contemporary automatic speech recognition (ASR) systems comprise a set of hidden Markov 
models (HMMs), each modelling a specific acoustic unit, typically a word or a phone-like unit. The 
most important features of an HMM are the probability density functions (pdfs) that specify the state 
output distributions. These are typically Gaussian mixture models (GMMs), and the mean and 
covariance vectors of the individual Gaussians are the most crucial parameters. In some very low-
complexity systems, the parameters of the acoustic models are estimated from speech data provided 
by the actual user, thus giving a set of speaker-dependent (SD) models. More typically they are 
created off-line, based on a large corpus of speech data from many speakers. These are known as 
speaker-independent (SI) models. However, even with a large SI training corpus, many potential 
users will experience that their speaker characteristics are not well covered by the SI training data, 
thus leading to poor ASR performance. 

To mitigate this problem, speaker adaptation can be used to adjust the acoustic models to better fit 
the characteristics of the specific user, based on a relatively small amount of speaker specific 
adaptation data. One common approach to speaker adaptation is to apply affine transformations to 
the mean vectors of the Gaussian components that comprise the acoustic models. An established 
technique for the calculation of these transformations is maximum likelihood linear regression (MLLR) 
(Leggetter and Woodland, 1995). In order to reduce the requirements for large amounts of adaptation 
data, a (potentially large) number of these components can share the same transform.  

Speaker adaptation is known to greatly improve the ASR performance for most speakers, however 
the problem of rapid, robust adaptation of a set of SI models to a new user remains a substantial one. 
The solution of this problem at a sufficiently low complexity for feasible implementation in hand-held 
devices is a further challenge of interest. This has motivated previous investigations into simpler 
affine transformation structures such as diagonal transforms (Leggetter and Woodland, 1994), which 
concluded that their performance cannot match that of a more conventional full transform. 

In this paper, a new evaluation of the recognition accuracy, computational complexity and memory 
requirements of different affine transformation configurations is made. Section 2 discusses some 
different transformation types, section 3 outlines an efficient scheme for MLLR, before the 
complexities of the proposed approaches are discussed in section 4. Section 5 describes and 
discusses the experiments before some conclusions are drawn in section 6. 

2. MLLR TRANSFORMATION ESTIMATION 

The criterion function to be maximised in MLLR is given by (Leggetter and Woodland, 1995): 
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where T is total number of feature vectors in an adaptation data set, Ω is the set of Gaussians within a 
regression class, to  is the feature vector at time t, )(ktγ is the posterior probability of to  occupying 
the k-th Gaussian at time t, kµ is the mean vector of the k-th Gaussian and kR  is the corresponding 
diagonal covariance matrix. A is the rotation matrix of the transform and b is the bias vector. To 
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A set of adaptation algorithms of different complexity can now be found by introducing different 
constraints on the affine transformation defined by A and b. In the following sub-sections we will 
discuss four different variations, with the A matrix taking the structure of a full, block-diagonal, 
diagonal, and an identity matrix. 

2.1 Full Rotation Matrix 

With a full rotation matrix A, the solution to eq. 1 is given by (Leggetter and Woodland, 1995): 
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where Wi is the i’th row of W, and D is the feature vector dimension. We thus have to solve D systems 
of D+1 unknowns for each of the transformations. 

2.2 Block-Diagonal Rotation Matrix 

If we let A be block-diagonal with L blocks, the solution to eq. 1 is given by: 
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where Wi
(l) is the i’th row of W(l). W(l)  is the transform associated with the l’th stream of the feature 

vector, with a feature vector dimension of Dl. We thus have to solve D equation systems of Dl+1 
unknowns for each of the transformations. 

2.3 Diagonal Rotation Matrix 

If we let A be a diagonal matrix, we can find the solution to eq. 1 using a similar approach to the one 
in (Myrvoll et al., 2001): 









=
















⇔

=+

=+

∑∑∑

∑∑∑

Ω∈Ω∈Ω∈

Ω∈Ω∈Ω∈

l

u

k
kk

k
kk

k
kkk

k
kkk

k
kkk

k
kkk

diag

diagdiagdiag

z
z

b
a

HG
GE

oRbRaµR

oµRbµRaµR

,)(

)()())(( 2

γγ

γγ
 

where )( kdiag µ is a diagonal matrix with the elements of the mean vector kµ on the diagonal and a is 
a vector with the elements from the diagonal of the rotation matrixA .  

The solution for a and b is given by: 
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Here, E, G, and H are all diagonal matrices, so that the equation system is easily solved element by 
element, with no need for matrix inversions. 

2.4 Identity Rotation Matrix 

If we let A be an identity matrix, the solution to eq. 1 can be further simplified. In this case the solution 
can be written: 

(4) 

(5) 
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The equation system described here is again easily solved element by element. 

3. AN EFFICIENT HIERARCHICAL TRANSFORMATION SCHEME 

The first step in a transformation based adaptation scheme is to align the adaptation data to the 
acoustic models, using either the forward/backward or Viterbi algorithm. As a result, the occupation 
count ( kγ ) and the weighted sum of the feature vectors aligned to a particular Gaussian ( ko ) is found 
for each of the Gaussians in the model set. We call these entities the occupation statistics. 

 1
2 3

4 5

6 7 8 9

10 11 12 13  

Figure 1. An example regression tree structure for grouping the Gaussian components of 
acoustic models. The grey nodes are base regression classes. 

Given the occupation statistics, the next question is how to cluster the Gaussians into the regression 
classes used for adaptation. A common approach is to organise the Gaussians in a tree structure, a 
so-called regression class tree (Gales, 1996). A simple binary regression class tree is shown in figure 
1. The tree contains a hierarchy of regression classes 1 – 13. Classes 2 and 8-13 are also base 
classes, i.e., they have the individual Gaussians in the model set as members. The idea behind a tree 
of this kind is that on a certain level in the tree, all Gaussians belonging to the same node will have 
similar acoustic properties, and thus could share a transformation. Classes without transformations by 
default inherit the transformation of the parent class. 

In the suggested approach, we first explicitly determine which regression classes should be used for 
transformation with a particular adaptation data set. The following criteria must be fulfilled, in order for 
a regression class to be used for transformation estimation: 

a) The occupation count must exceed a threshold. 
b) The number of member Gaussians with a non-zero occupation count must exceed a threshold. 
c) At least one of the child nodes must fail one or both of the previous criteria. 

Criterion (b) above is not used in other implementations that have been reported, but is used here in 
order to improve the numerical properties of the system. Without this criterion, the equation systems 
described in section 2 will often be ill-conditioned, and thus a numerically robust and computationally 
expensive solution will be required.   

With all the above in place, the final step is to calculate the transformations for the appropriate 
regression classes in the tree. For this, we traverse the tree in a depth first, post-order, non-recursive 
fashion. This ensures that for every node that is being processed, all its child nodes will already have 
been processed. For the example tree shown in figure 1, such a node sequence is 2, 10, 11, 6, 12, 
13, 7, 4, 8, 9, 5, 3, and 1. 

From the equations in section 2, we see that for each of the transformation types, there are several 
matrices and vectors based on the occupation statistics and model parameters that are required for 
the transformation estimation. We call these the intermediate matrices/vectors. For the full 
transformation these are { ii Gz , }, for a block-diagonal transformation { )()( , l

i
l
i Gz }, for a diagonal 

transformation { lu zzHGE ,,,, }, and for the bias-only transformation { zH, }. By studying equations 2 - 
6, we can see that the value of each of these matrices/vectors in a given node is simply the sum of 
the corresponding entities in all its child nodes. Thus, by traversing the tree in the suggested fashion, 
we ensure that the number of nodes that hold the intermediate matrices/vectors in memory at any 
instant of time is a maximum of one node per level in the tree. As soon as a node has been 
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processed, the intermediate matrices/vectors are propagated up the tree to the parent node, unless it 
has already been established that no nodes further up the tree will require a transformation to be 
calculated. In any case, the memory used for these matrices/vectors in the current node can be freed.  

4. COMPLEXITY ANALYSIS 

As evident from the discussion in the previous two sections, the various constraints put on the affine 
transformation can lead to very different computational load. In this section we will analyse each of 
the four different transformation types discussed with respect to computational complexity and 
memory requirements. 

There are three main components to the analysis. First of all the calculation of the occupation 
statistics will require a considerable amount of resources. We will assume here that the Viterbi 
algorithm is applied for this purpose. Note that the complexity of this procedure is not affected by the 
transformation configuration. The second component is the calculation, storage and propagation of 
the intermediate matrices/vectors. Obviously, the choice of transform type will influence the resources 
required for this to a large degree. The final component is the calculation and storage of the 
transformations themselves. Again, the transform type will influence the complexity. 

The following notation is used for the remainder of this section: 

 D: feature vector dimension 
 L:  number of blocks in the block-diagonal transformations (assumed equal-sized blocks) 
 P: number of pdfs in the HMM set 
 N: depth of the regression tree 
 K: number of transforms used for a given amount of data 
 T: number of adaptation data frames 
 M: average number of components in the observation density GMMs 
 S: average number of active states in the Viterbi-based statistics collection  

Table 1 shows the dominant terms contributing to the number of multiplications/additions, as well as 
the number of elements that require storage during the transformation estimations. These numbers 
do not show an exact picture, but aim to give an understanding of the relationship between the 
complexities of the different parts of the algorithm. Note that the results shown in section 5 build on 
the underlying and more comprehensive analyses.  

This table tells us that the computational complexity associated with the Viterbi algorithm will typically 
be smaller than the two other components if full transformation matrices are used, but this is gradually 
changed when the structure of the matrices are simplified, in particular because no matrix inversions 
are needed. With the simple transforms, the Viterbi algorithm will dominate the complexity. The Viterbi 
algorithm dominates the memory requirements in all the instances, but again the simpler 
transformations will lead to a reduction compared to the full and block-diagonal transformations. Note 
however that these effects are partially offset by the fact that when the transformation structure is 
being constrained, it is required to increase the number of transforms to maintain the performance.    

Table 1. The dominant terms with respect to the number of multiplications and additions 
(#m/a) and elements requiring storage (#elm) for different transformation types. 

Full Block-diagonal Diagonal Identity  
#m/a #elm #m/a #elm #m/a #elm #m/a #elm

Viterbi alignment TSMD PD TSMD PD TSMD PD TSMD PD 
Intermediate matrices/vectors PD3 ND2 P(D/L)3 N(D/L)

2 
PD ND PD ND 

Calculation of 
transformations 

KD4 KD2 K(D/L)4 K(D/L)2 KD KD KD KD 

5. EXPERIMENTS 

The experiments were performed on the 5000-word Wall Street Journal (WSJ) 1993 Spoke 3 task of 
non-native speakers. The adaptation was done in unsupervised mode with both monophone and tied-
state triphone models. These models have 1920 and 10336 Gaussian components, respectively. 
Feature vectors comprising 12 MFCCs and normalised log-energy, augmented by the delta and delta-
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delta parameters, were extracted for each 10 ms frame of speech. Cepstral mean subtraction was 
also performed. The grammar used was the back-off bigram from MIT Lincoln Laboratories. 

The adaptation and test data were partitioned into development and evaluation sets, where the 
development set was used to decide on optimum parameter settings for each transformation 
configuration, including the regression tree size and the occupation count thresholds. The optimum 
settings found for these are shown in table 2. The results reflect that when the transformation 
structure is being constrained, the optimal number of transforms will indeed increase due to the larger 
tree sizes and decreased occupation count thresholds. 

Table 2.  Optimal parameter settings found from development set experiments. 

 Number of leaf nodes Occupation count 
threshold 

Type Monophone Triphon
e 

Monophone Triphone 

Full 64 128 500 750 
Block 
diagonal 

128 128 250 250 

Diagonal 1024 1024 40 30 
Bias only 1920 4096 10 10 

 
The evaluation set was used to perform comparisons between the optimised configurations. 
Adaptation data comprised sets of 1, 3, 5, 10, 20 and 40 utterances, and testing was performed on a 
separate set of 40 utterances. The results were averaged across 10 speakers. The results from these 
experiments are shown in figure 2, and confirm that the performance of each configuration is 
remarkably similar. Recognition accuracy varies between different transform configurations by less 
than 1.5% and 2% for monophones and triphones, respectively. From these results, it is evident that 
simpler transform configurations such as diagonal and bias only transforms can achieve close to the 
same recognition accuracy as a conventional full transform if the number of transformations is 
increased to a sufficient level. 

 
(a)                                                                              (b) 

Figure 2. Average recognition accuracy vs. number of utterances with monophone (a) 
and triphone (b) models for different transform types. 

Figure 3 shows the results from a complexity analysis of the triphone experiments. It shows that 
despite the increased number of transformations, a clear advantage is maintained for the simple 
transformations in terms of the number of additions and multiplications. In fact, the computational 
complexity is almost entirely dominated by the Viterbi alignment for the diagonal and bias transforms.  

In terms of memory, the picture is slightly different, as the differences between the transform types 
are much smaller. The bias transformation is actually found to have larger memory requirements than 
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all the other configurations in some instances. The block-diagonal transform is found to be the most 
efficient in terms of memory requirements. This is because the block-diagonal structure used here 
exploits the fact that there is little cross-correlation between the streams (in this case, between the 
static, delta, and delta-delta parameters) of the feature vector, thus reducing the overall number of 
transformation parameters required. The diagonal and bias transforms fail to exploit the correlation 
within a stream, thus increasing the number of transformation parameters required in these cases. 

                           
(a)                                                                              (b) 

Figure 3. The number of additions (a) and the memory requirements (b) for 
transformation estimation with triphone models for different transform types. 

In contrast to previous findings (Leggetter and Woodland, 1994), the diagonal transform was found to 
allow the computational complexity to be reduced by one to two orders of magnitude relative to 
conventional methods, while preserving a similar recognition accuracy. This is also accompanied by a 
reduction in the memory requirements. A further disadvantage of the full and block-diagonal 
configurations is the difficulty of implementing accurate matrix inversions in fixed-point arithmetic. 

6. CONCLUSION 

Results of the performance tests show that with optimum parameter choices, low-complexity 
transformation configurations are capable of producing accuracies virtually identical to those of high-
complexity transformation configurations. Thus, computational complexity can be reduced by one to 
two orders of magnitude relative to more conventional speaker adaptation methods, while preserving 
the same recognition accuracy. 
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