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ABSTRACT:  In this paper we suggest that rather than modelling speaker mismatch as an 
affine transform of the entire feature vector, it can be modelled by an affine transform of the 
static coefficients with additional constraints imposed by the temporal relationships of the 
streams of coefficients. This results in the different streams sharing the same rotation matrix, 
and thus reduces the complexity and memory requirements for speaker adaptation, as well as 
minimises the adaptation data requirements. We present the solution for the case where 
temporal structure constrained transforms (TSCT) are optimised using the maximum likelihood 
criterion. The experiments presented in the paper show that with the proposed approach, a 
relative improvement in accuracy of around 26% can be observed for a digit recognition task 
over the use of block-diagonal transforms, with as little as two adaptation utterances.   

 

1. INTRODUCTION 

It is well known that speaker-independent (SI) automatic speech recognition (ASR) systems, despite 
the steady improvements generated over recent years, still have error rates that are much larger than 
corresponding speaker-dependent (SD) systems [Zhang et. al. 2002]. However, it takes large 
amounts of data to properly estimate the model parameters of an ASR system, and it is therefore in 
most cases not possible to collect sufficient SD data to create such models. More commonly, data 
from a large pool of different speakers are used to generate SI acoustic models. Even though some 
speakers experience very good performance with such models, a large variation in accuracy can be 
expected in the population, depending on how well a particular user’s voice characteristics (including 
both physiological and sociological aspects) are represented in the training data set. 

A common solution to the speaker mismatch problem is to employ speaker adaptation techniques 
[Zhang et. al. 2002; Gunawardana & Byrne 2000; Kwong 1999; Leggetter & Woodland 1995]. Such 
methods modify the parameters of the SI acoustic models, using only small amounts of speaker 
specific data, to generate the speaker-adapted (SA) models. The goal is to approach the accuracy 
that can be achieved using SD ASR systems, while at the same time minimising the training load on a 
user.  

One of the most successful approaches to speaker adaptation in the hidden Markov model (HMM) 
framework is maximum likelihood linear regression (MLLR) [Leggetter & Woodland 1995]. The most 
important feature of an HMM is the probability density functions (pdfs) that specify the state output 
distributions. These are typically Gaussian mixture models. In MLLR, the mean vectors of the 
Gaussians are grouped into clusters, and each mean vector (µ) in a cluster is adapted using an affine 
transformation of the form: 

βΓµµ +=ˆ .     (1) 

By carefully selecting the number of clusters to be used, not only MLLR can help to create good SA 
models when a sufficient amount of adaptation data has been collected, but also it yields 
improvements when only small amounts of data are available. In this case, the clustering approach 
will help adapting mean vectors for which there are no data available in the adaptation set. However, 
with small amounts of data, the number of transformation parameters that can be reliably estimated 
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will ultimately limit the extent of the performance improvement. In this paper we present a procedure 
that exploits the temporal relationship that is typically used in ASR feature vectors. The objective of 
this approach is to reduce the dimensionality of the affine transformations. We will show how this can 
help reducing the computational complexity, as well as increasing the adaptation rate. The latter is 
possible because fewer parameters will be required to specify each transformation. 

In the next section we will develop the solution for this new transformation under the maximum 
likelihood (ML) criterion. In section 3, we will then report some experimental results with this novel 
method for a noisy English digit database, and compare them to a standard MLLR approach. The 
results are discussed in section 4 while our conclusion can be found in section 5. 

 
2. TEMPORAL STRUCTURE CONSTRAINED TRANSFORMATION (TSCT) 

The feature vectors typically used in ASR consist of a stream of static coefficients, augmented by their 
individual 1st order and 2nd order time derivatives. It is often assumed that there is no cross-correlation 
among these streams of coefficients, and this is commonly exploited to reduce the complexity in 
transformation-based adaptation. The implication of this assumption is that the rotation matrix is 
reduced to a block-diagonal form, and thus a reduced number of adaptation parameters need to be 
estimated.  

Our approach is different, in that rather than modelling speaker mismatch as an affine transform of 
the entire feature vector, it is modelled by an affine transform of the static coefficients. The additional 
constraints are then imposed by the temporal relationships of the streams of coefficients. This results 
in the different streams sharing the same rotation matrix, and therefore we can further reduce the 
number of non-zero elements in a transformation to one-third of that of a block-diagonal 
transformation. This reduces the complexity and memory requirements for the adaptation, as well as 
minimises the adaptation data requirements.  

2.1 Definition of TSCT 

For an n-dimensional input feature vector X, its output vector (Y) after transformation is given by: 

βXΓY +=      (2) 

The transformation is thus defined by the n x n rotation matrix Γ and the n x 1 bias vector β . 

We now assume that the feature vector consists of the static coefficients (x), augmented by their 
individual 1st order ( x& ) and 2nd order ( x&& ) time derivatives. We can write this as TTTT ][ xxxX &&&= . 
Assuming that speaker mismatch can be modelled by an affine transform of the static coefficients, 
these coefficients are transformed to  

bAxy += ,     (3) 

where A is a n/3 x n/3 rotation matrix and b is a n/3 x 1 bias vector. We can now introduce the 
constraints imposed by the temporal relationships between the streams of coefficients. It follows from 
equation (3) that: 

xAxAy &== dtddtd //      (4) 

xAxAy &&== 2222 // dtddtd     (5) 

The TSCT transformation can thus be written: 
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By contrast, the standard block-diagonal transformation is reached by assuming that speaker 
mismatch can be modelled by an affine transformation of the entire feature vector and at the same 
time assuming that the cross-correlation between the streams of the feature vector is zero. For this 
conventional case the transformation can be written: 

    















+
































=
















=

3

2

1

b
b
b

x
x
x

A00
0A0
00A

y
y
y

Y

3

2

1

&&

&

&&

&    (7) 

In this case, each Ai is of dimension n/3 x n/3, while each of the bi is of dimension n/3 x 1.  

2.2 Estimation of TSCT 

The general criterion function to be maximised in MLLR for estimating a transformation is given by 
[Leggetter & Woodland 1995]: 
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where τ is the total number of feature vectors in an adaptation data set, Ω is the set of Gaussians 
within a regression class, ot is the feature vector at time t, γt(k) is the posterior probability of ot 
occupying the k-th Gaussian at time t, µk is the mean vector of the k-th Gaussian and Rk is the 
corresponding diagonal covariance matrix, Γ is the rotation matrix of the transform, β is the bias 
vector, W = [Γ  β]  and  ]1[~ TT µµ = . 

In order to simplify the subsequent equations, we add a superscript (i) to a vector or a matrix to 
identify the corresponding stream of coefficients that it is referred to. For example, x(1) refers to the 
static coefficients, x(2) refers to delta coefficients (1st order time derivatives) and so on. By imposing 
the temporal structure constraints, equation (8) can be re-written as: 
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By differentiating the above criterion function in equation (9) with respect to the transform matrix W 
and equating the resultant matrix equation to 0, we obtain the following equation system: 
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To allow more flexibility in this framework, we now introduce a scaling factor for the occupation count 
corresponding to each stream of a feature vector, i.e., )(ktγ is multiplied by )(iλ . The equation system 
can then be written as: 
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The above equation system can be solved row-by-row and the solution is given by: 
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where rk(i)(j) is the j-th diagonal element of Rk
(i) , )()( ji

ko is the j-th element of )(i
ko and W(j) is the j-th 

row of W. 
 
 

Note that if we choose )3()2()1( λλλ == , the solution to this equation system provides the maximum 
likelihood (ML) solution to the TSCT optimisation problem. If we choose to let these scaling factors 
have different values, we will deviate from this solution. However, this framework increases the 
flexibility of the approach by allowing the contribution from the different parameter sets to be weighted 
differently. It would for instance give us the opportunity to calculate the transform based only on the 
static coefficients by setting 1)1( =λ and 0)3()2( == λλ , thus incorporating the technique suggested in 
[Choi 1996] as a special case. 

 

3.  EXPERIMENTS 

3.1 Experimental Setup 

In order to evaluate the efficacy of the temporal structure constrained transformations relative to 
conventional MLLR, an experiment was performed on a digit-dialling task using a proprietary speech 
recognition search engine. MFCC, delta-MFCC and delta-delta-MFCC features were extracted for 
each 10 ms frame of input speech using the advanced front-end [Macho 2002]. SI acoustic models 
were generated using digit portions of the Macrophone speech corpus [Bernstein 1994], which 
consists of many different speakers reciting strings of between three and eighteen digits (from /oh/, 
/zero/, /one/, . . .  /nine/) in length in clean (non-noisy) conditions. 4184 digit strings comprising 39484 
digits spoken by 2003 speakers were used to generate eleven whole word models with 14 emitting 
states and 6 Gaussian components per state, and one silence model. From these models, a 
regression tree was formed with 98 regression classes. 

Adaptation and testing were performed using a noisy condition (“hands-free” mode speech inside a 
car with engine running) from a proprietary speech corpus that comprises digit strings of the same 
format as the Macrophone corpus used to train the SI models. Supervised adaptation (i.e. where 
adaptation is performed with knowledge of the correct digit sequence) was then performed for each of 
the 16 speakers, on a subset of the data available for that speaker. This produced a set of 
transformations for that speaker. This process was repeated using 1, 2, 3, 5, 10 and 20 digit strings 
as adaptation data, for each speaker. Preliminary experiments testing various scaling factor values 
revealed that the recognition accuracy of the TSCT was maximised for )3()2()1( λλλ == , and 
accordingly settings of 1)3()2()1( === λλλ  were employed in this experiment. During adaptation, an 
occupation count threshold of 200 was employed. 

The transformations produced by the previous step were then applied to the SI models and the 
transformed models were tested on 40 digit strings formed from another subset of the internal speech 
corpus (disjoint from the subset used during adaptation). The average string recognition accuracy 
over all 40 strings was then calculated for each speaker, and then averaged again across all 
speakers to produce a series of recognition accuracies corresponding to adaptation over 1, 2, 3, 5, 10 
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and 20 digit strings. Note that string accuracy is defined here as the percentage of strings for which 
every digit in the string is correctly recognized. 

The entire preceding experimental process was performed once for conventional block-diagonal 
transformations, and once for block-diagonal TSCT’s. In both cases, the same experimental settings 
and data were used at every stage. 

3.2 Results 

The recognition accuracy results, as shown in Figure 1, show that for the parameter settings used in 
this experiment, temporal structure constrained transformations perform better for 1~5 utterances, 
while conventional transformations perform better for greater amounts of adaptation data. It can be 
observed that the adaptation rate has been improved significantly by using TSCT’s. With only one 
adaptation utterance, the improvement in string accuracy is more than 3% absolute. It demonstrates 
that the temporal constraints provide a more efficient means of capturing speaker characteristics with 
sparse speech data. 

 

 

Figure 1. Average string recognition accuracy (%) across all (16) speakers resulting 
from SI models transformed using conventional (solid) and temporal structure-
constrained (dashed) block-diagonal transformations. The result from the SI 
(untransformed) models is also shown (solid, horizontal). 

 

4. DISCUSSION 

Due to the intentional constraints on the transformation structure of the novel approach, the TSCT 
results in section 3 were obtained using exactly one-third of the memory required for the storage of 
the conventional block-diagonal transformations. This is a considerable saving that could be critical in 
an embedded implementation. Not only the use of TSCT requires less storage, but also, more 
importantly, it needs less amount of speech data to obtain the same improvement in accuracy 
comparing with conventional approach. The improvement in adaptation rate is crucial in enhancing 
the initial experience of a new user for using a voice interface.  

Although the TSCT approach does not provide better accuracy beyond 5 utterances as shown in 
Figure 1, it is entirely feasible to make parameter adjustments (e.g. an increase in the number of 
transforms) as the number of utterances increases in order to provide virtually identical performance 
to that of the conventional approach beyond 5 utterances. No parameter adjustment of the 
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conventional approach, however, will provide better performance than that produced by the TSCT 
approach over 1~5 utterances. As a matter of fact, our further investigation has revealed that for a 
given recognition accuracy, the TSCT approach always requires the least amount of total 
transformation parameters (i.e. number of transforms times the number of coefficients in a transform). 
In other words, fewer transformation parameters are needed to efficiently capture the differences in 
voice characteristics of different speakers by using TSCT. 

The graph in Figure 1 indicates that the accuracy after using one adaptation utterance based on 
TSCT is close to the corresponding SI performance. Although the accuracy is still a little bit lower than 
that obtained by just using the SI models, it is not an issue at all since other techniques can be 
incorporated into the TSCT framework for achieving a better accuracy than the SI performance. An 
example of such techniques is the use of discounted likelihood in computing the transformations 
[Gunawardana & Byrne 2000]. 

The derivation here assumes that the rotation matrix A is of full-rank. Therefore further simplification 
of the TSCT is possible if we also impose that A is a diagonal matrix. In this case, equation (10) 
becomes a set of independent scalar equations that can then be solved individually without involving 
any matrix inversions. This particular form of transformation is most suitable for embedded system 
implementation for its simplicity in computation.  

 

5. CONCLUSION 

Rapid adaptation on very limited data is a difficult task for which there are few improvements on 
conventional approaches. It is during these first few utterances that a user will have their critical first 
experience of a particular speech recognition system. Thus, it is claimed that the TSCT approach 
provides a strong advantage. In particular, we have demonstrated the better performances of the 
TSCT approach on a digit recognition task, in terms of both memory storage and accuracy after 
adaptation. The experimental results verified that temporal structure of feature vectors can be used to 
reduce the complexity of a transformation and at the same time to enhance the capability of a 
transformation in capturing the different voice characteristics. 
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